
Sinistra Documentation
Release 0.1

Gillen Brown

May 24, 2016





Contents

1 Utilities 3

2 Classes 7

3 Astropy Helpers 9

4 Photometry 11

5 Indices and tables 13

Python Module Index 15

i



ii



Sinistra Documentation, Release 0.1

Sinistra is a Python library of functions I’ve found useful in my time doing astronomy. They may or may not be useful
to anyone else.

The name Sinistra comes from the name of the astronomy professor at Hogwarts in the Harry Potter universe, Professor
Sinistra.

Contents:

Contents 1



Sinistra Documentation, Release 0.1

2 Contents



CHAPTER 1

Utilities

sinistra.utilities.ab_to_vega(ab_mag, band)
Converts a AB mag to Vega.

This basically contains a bunch of AB-Vega conversions, so I don’t have to look them up every time I want to
do anything.

Parameters

• ab_mag (float) – magnitude in the AB system to be converted to Vega.

• band (str) – Band the magnitude is in. Can be one of the following: “w1”, “w2”, “w3”,
“w4”.

Returns float containing the Vega magnitude

sinistra.utilities.check_if_file(possible_location)
Check if a file already exists at a given location.

Parameters possible_location (str) – File to check. Can be a path to a file, too.

Returns bool representing whether or not a file already exists there.

sinistra.utilities.empty_data(datatype)
Makes an empty data of a given datatype.

This is useful for filling tables that have missing values.

Here is what the various datatypes return:

Float: np.nan

Integer: -999999999999

String: Empty string.

Parameters datatype – data type, obtained by using .dtype on some numpy object.

sinistra.utilities.flux_conv(flux_zeropont, counts_zeropoint)
Calculate the conversion factor from counts to flux.

This is done by using the zeropoints of the magnitudes in flux and counts. The magnitude should be the same

3



Sinistra Documentation, Release 0.1

no matter how we calculate it, which is how we can derive this:

magflux = magcounts

−2.5 log10(𝐹 ) + 𝑍𝐹 = −2.5 log10(𝐶) + 𝑍𝐶

where 𝐹 = Flux, 𝐶 = counts, and 𝑍𝐹 and 𝑍𝐶 represent the respective zeropoints when using flux or counts

−2.5(log10(𝐹 )− log10(𝐶)) = 𝑍𝐶 − 𝑍𝐹

log10

(︂
𝐹

𝐶

)︂
=

𝑍𝐹 − 𝑍𝐶

2.5

𝐹

𝐶
= 10

𝑍𝐹 −𝑍𝐶
2.5

𝐹 = 𝐶 * 10
𝑍𝐹 −𝑍𝐶

2.5

𝐹 = 𝐶 * Flux Conversion

where Flux Conversion = 10
𝑍𝐹 −𝑍𝐶

2.5

This flux conversion is what is calculated here.

NOTE: Make sure the magnitudes really are the same (ie AB/Vega).

Parameters

• flux_zeropoint (float) – zero point for calculating magnitudes when using flux,
such that mag = -2.5 log(flux) + flux_zeropoint. The actual value will depend on what flux
units you want. If you want microJanskys, use 23.9, for example.

• counts_zeropoint – zero point for calculating magnitues when using counts, such that
mag = -2.5 log(counts) + counts_zeropoint. This is often found in the header of the image
in question.

Returns float containing the conversion from counts to flux, such that flux = counts * flux_conv.
See above for derivation.

sinistra.utilities.flux_to_mag(flux, zeropoint)
Convert flux to magnitude with the given zeropoint.

𝑚 = −2.5 log10(𝐹 ) + 𝐶

Parameters

• flux – flux in whatever units. Choose your zeropoint correctly to make this work with the
units flux is in.

• zeropoint – zeropoint of the system (in mags)

Returns magnitude that corresponds to the given flux

sinistra.utilities.gaussian(x, mean, sigma, amplitude)
The Gaussian density at the given value.

The Gaussian density is defined as

𝑓(𝑥) = 𝐴𝑒−
(𝑥−𝜇)2

2𝜎2

Note that if you want a normalized Gaussian (so that the total area under the curve is 1), then use the
normed_gaussian() function.

Parameters

• x (float) – location to get the Gaussian density at.

4 Chapter 1. Utilities



Sinistra Documentation, Release 0.1

• mean (float) – Mean of the Gaussian.

• sigma (float) – Standard deviation of the Gaussian. Should be positive

• amplitude – Height of the highest point of the Gaussian.

Returns Gaussain density of the given gaussian at the given x value.

sinistra.utilities.mag_errors_to_percent_flux_errors(mag_error)
Converts a magnitude error into a percent flux error.

𝑚 = −2.5 log10(𝐹 ) + 𝐶

𝑑𝑚 =
−2.5

ln(10)

𝑑𝐹

𝐹

𝑑𝐹

𝐹
=

ln(10)

2.5
𝑑𝑚

The minus sign just tells us that increasing flux gives decreasing magnitudes, so we can safely ignore it.

Parameters mag_error – magnitude error

Returns percentage flux error corresponding to this magnitude error.

sinistra.utilities.mag_to_flux(mag, zeropoint)
Convert a magnitude into a flux.

We get the conversion by starting with the definition of the magnitude scale.

𝑚 = −2.5 log10(𝐹 ) + 𝐶

2.5 log10(𝐹 ) = 𝐶 −𝑚

𝐹 = 10
𝐶−𝑚
2.5

Parameters

• mag – magnitdue to be converted into a flux.

• zeropoint – zeropoint (in mags) of the magnitude system being used

Returns flux that corresponds to the given magnitude

sinistra.utilities.normed_gaussian(x, mean, sigma)
The Gaussian density at the given value.

The Gaussian density is defined as

𝑓(𝑥) =
1

𝜎
√
2𝜋

𝑒−
(𝑥−𝜇)2

2𝜎2

Noe that if you want a Gaussian that is not normalized (ie where you can set the amplitude), then use the
gaussian() function.

Parameters

• x (float) – location to get the Gaussian density at.

• mean (float) – Mean of the Gaussian.

• sigma (float) – Standard deviation of the Gaussian. Should be positive

Returns Gaussain density of the given gaussian at the given x value.

5



Sinistra Documentation, Release 0.1

sinistra.utilities.percent_flux_errors_to_mag_errors(percent_flux_error)
Converts a percentage flux error into a magnitude error.

𝑚 = −2.5 log10(𝐹 ) + 𝐶

𝑑𝑚 =
−2.5

ln(10)

𝑑𝐹

𝐹

Parameters percent_flux_error – percentage flux error

Returns magnitude error corresponding to the percentage flux error.

sinistra.utilities.reduced_chi_sq(model, data, errors)
Does a reduced chi squared calculation

𝜒2 =

𝑛∑︁
𝑘=1

(︂
model𝑘 − data𝑘

error𝑘

)︂2

𝜒2
red =

𝜒2

𝑛

where 𝑛 is the number of data points.

Parameters

• model – list of values that describe a possible fit to the data

• data – list of values that are the data do be fitted

• errors – list of errors on the data

Returns value for the reduced chi squared value of the fit of the model to the data

sinistra.utilities.vega_to_ab(vega_mag, band)
Converts a Vega mag to AB.

This basically contains a bunch of AB-Vega conversions, so I don’t have to look them up every time I want to
do anything.

Parameters

• vega_mag (float) – magnitude in the Vega system to be converted to AB.

• band (str) – Band the magnitude is in. Can be one of the following: “w1”, “w2”, “w3”,
“w4”.

Returns float containing the ab magnitude

6 Chapter 1. Utilities



CHAPTER 2

Classes

class sinistra.classes.AsymmetricData(value, upper_error, lower_error)
Bases: sinistra.classes.Data

Class that represents a data point, with both a value and upper and lower errors.

Addition and subtraction operators are implemented smartly.

class sinistra.classes.Data(value, error)
Bases: object

Class that represents a data point. Has a value, as well as errors.

Addition and subtraction operators are implemented smartly, too.

7



Sinistra Documentation, Release 0.1

8 Chapter 2. Classes



CHAPTER 3

Astropy Helpers

sinistra.astropy_helpers.match_one(table_1, table_2, ra_col_1=’ra’, ra_col_2=’ra’,
dec_col_1=’dec’, dec_col_2=’dec’, max_sep=3.0, in-
clude_all_from_1=False)

Matches objects from two astropy tables by ra/dec. All objects from the first will be matched to one in the
second.

Parameters

• table_1 – First astopy table object containing objects with ra/dec information.

• table_2 – First astopy table object containing objects with ra/dec information.

• ra_col_1 – Name of the ra column in table_1. Defaults to “ra”.

• ra_col_2 – Name of the ra column in table_2. Defaults to “ra”.

• dec_col_1 – Name of the dec column in table_1. Defaults to “dec”.

• dec_col_2 – Name of the dec column in table_2. Defaults to “dec”.

• max_sep – Maximum separation (in arcseconds) allowed for two objects to be considered
a match.

• include_all_from_1 – Whether or not to include all rows from table 1, not just those
that have matches.

Returns Astropy table object containing the matches between the two input table objects. All
columns from both catalogs will be included, as well as a separate separation column.

sinistra.astropy_helpers.pretty_write(table, out_file, clobber=False)
Writes an astropy table in a nice format.

Parameters

• table (astropy.table.Table) – Astropy table object to write to file.

• out_file (str) – Place to write the resulting ascii file.

• clobber (bool) – Whether or not to overwrite an existing file, if it exists. If this is false,
the function will exit with an error if a file already exists here. If clobber is True, it will
overwrite the file there.

sinistra.astropy_helpers.symmetric_match(table_1, table_2, ra_col_1=’ra’, ra_col_2=’ra’,
dec_col_1=’dec’, dec_col_2=’dec’,
max_sep=3.0)

Matches objects from two astropy tables by ra/dec.

9



Sinistra Documentation, Release 0.1

This function does symmetric matching. This measns that to be defined as a match, both objects must be each
other’s closest match. Their separation must also be less than the max_sep parameter.

Parameters

• table_1 – First astopy table object containing objects with ra/dec information.

• table_2 – First astopy table object containing objects with ra/dec information.

• ra_col_1 – Name of the ra column in table_1. Defaults to “ra”.

• ra_col_2 – Name of the ra column in table_2. Defaults to “ra”.

• dec_col_1 – Name of the dec column in table_1. Defaults to “dec”.

• dec_col_2 – Name of the dec column in table_2. Defaults to “dec”.

• max_sep – Maximum separation (in arcseconds) allowed for two objects to be considered
a match.

Returns Astropy table object containing the matches between the two input table objects. All
columns from both catalogs will be included, as well as a separate separation column.

sinistra.astropy_helpers.symmetric_match_both(table_1, table_2, ra_col_1=’ra’,
ra_col_2=’ra’, dec_col_1=’dec’,
dec_col_2=’dec’, max_sep=3.0)

Matches objects from two astropy tables by ra/dec, including all objects.

This function does symmetric matching. This measns that to be defined as a match, both objects must be each
other’s closest match. Their separation must also be less than the max_sep parameter.

Each object from both tables is included, even if there are no matches for that object. The empty space will be
filled with the appropriate empty data.

Parameters

• table_1 – First astopy table object containing objects with ra/dec information.

• table_2 – First astopy table object containing objects with ra/dec information.

• ra_col_1 – Name of the ra column in table_1. Defaults to “ra”.

• ra_col_2 – Name of the ra column in table_2. Defaults to “ra”.

• dec_col_1 – Name of the dec column in table_1. Defaults to “dec”.

• dec_col_2 – Name of the dec column in table_2. Defaults to “dec”.

• max_sep – Maximum separation (in arcseconds) allowed for two objects to be considered
a match.

Returns Astropy table object containing the matches between the two input table objects. All
columns from both catalogs will be included, as well as a separate separation column.

10 Chapter 3. Astropy Helpers



CHAPTER 4

Photometry

sinistra.phot.aperture_grid(image, spacing, output=False, clobber=False)
Makes a grid of apertures and writes to a qphot-compatible coords file.

Parameters

• image (str) – location of the image to be used.

• spacing – x and y spacing between locations. For example, if one aperture is located at
x, the next is x + spacing. The same thing holds for the y direction.

• spacing – float

• output (bool / str) – Either False, or the name of the coordinates file that the output
will be written to. If you don’t want to write to a file, pass in False.

• clobber – Whether or not to check for an already existing file of this name. If it already
exists, it will raise an error.

Returns List of tuples that contain the x,y coordinates of each aperture.

sinistra.phot.fit_gaussian_negative(data, upper_cutoff, plot=False, savename=None,
data_label=’Counts’)

Fits a Gaussain to all data underneath some cutoff.

This is useful when doing things where the lower side of a Gaussian tells about the intrinsic scatter of something,
whereas the upper end is contaminated by real objects. An example is the flux within many randomly placed
apertures. The lower side will tell the sky error in the aperture flux.

Parameters

• data (list, np.array) – list of data to be fitted.

• upper_cutoff (float) – Data below this number will be used to fit the Gaussian, while
data above this will be rejected.

• plot (bool) – Whether or not to create a plot showing the best fit to the histogram of the
data.

• savename (str) – If you are creating a plot, enter a file path here to save the figure. If this
is left as none, then the plot will not be saved. If you are running in an Jupyter notebook,
the figure will show up even if it is not saved, so it’s not essential.

• data_label (str) – Descriptor of the data that will be used on the x-axis of the data
histogram. Defaults to “Flux” unless otherwise specified.

Returns the mean and sigma of the best fit Gaussian.

11



Sinistra Documentation, Release 0.1

sinistra.phot.sky_error(image, aperture_size, flux_conv, plot=True)
Figures out the sky error with an aperture of a given size.

This is done by placing apertures in a grid throughout the image, then doing aperture photometry within those
apertures. Most of those will be on empty sky. By examining the spread of the fluxes of the apertures that were
on empty sky, we can get an idea of the general sky scatter in an aperture of that size.

Parameters

• image (str) – Image to do this process on. Pass in the path to the image, or just the name
of the image if it is in the current directory.

• aperture_size (float) – The diameter of the aperture you want to use. NOTE THAT
THIS IS DIAMETER, NOT RADIUS!

• flux_conv (float) – multiplicative factor to get from counts in the image to real fluxes
in whatever units you want. Should be defined such that “flux” = “counts” * flux_conv. This
can be determined from the zeropoint of the image.

• plot (bool) – Whether or not to plot the Gaussian that results from this process.

Returns flux error within that aperture size, in real flux units. Note you need to multiply by the
aperture correction to get total errors!

12 Chapter 4. Photometry



CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13



Sinistra Documentation, Release 0.1

14 Chapter 5. Indices and tables



Python Module Index

s
sinistra.astropy_helpers, 9
sinistra.classes, 7
sinistra.phot, 11
sinistra.utilities, 3

15



Sinistra Documentation, Release 0.1

16 Python Module Index



Index

A
ab_to_vega() (in module sinistra.utilities), 3
aperture_grid() (in module sinistra.phot), 11
AsymmetricData (class in sinistra.classes), 7

C
check_if_file() (in module sinistra.utilities), 3

D
Data (class in sinistra.classes), 7

E
empty_data() (in module sinistra.utilities), 3

F
fit_gaussian_negative() (in module sinistra.phot), 11
flux_conv() (in module sinistra.utilities), 3
flux_to_mag() (in module sinistra.utilities), 4

G
gaussian() (in module sinistra.utilities), 4

M
mag_errors_to_percent_flux_errors() (in module sinis-

tra.utilities), 5
mag_to_flux() (in module sinistra.utilities), 5
match_one() (in module sinistra.astropy_helpers), 9

N
normed_gaussian() (in module sinistra.utilities), 5

P
percent_flux_errors_to_mag_errors() (in module sinis-

tra.utilities), 5
pretty_write() (in module sinistra.astropy_helpers), 9

R
reduced_chi_sq() (in module sinistra.utilities), 6

S
sinistra.astropy_helpers (module), 9
sinistra.classes (module), 7
sinistra.phot (module), 11
sinistra.utilities (module), 3
sky_error() (in module sinistra.phot), 11
symmetric_match() (in module sinistra.astropy_helpers),

9
symmetric_match_both() (in module sinis-

tra.astropy_helpers), 10

V
vega_to_ab() (in module sinistra.utilities), 6

17


	Utilities
	Classes
	Astropy Helpers
	Photometry
	Indices and tables
	Python Module Index

