

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Sinistra 0.1 documentation

Welcome to Sinistra’s documentation!

Sinistra is a Python library of functions I’ve found useful in my time
doing astronomy. They may or may not be useful to anyone else.

The name Sinistra comes from the name of the astronomy professor at Hogwarts
in the Harry Potter universe, Professor Sinistra.

Contents:

	Utilities

	Classes

	Astropy Helpers

	Photometry

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sinistra 0.1 documentation

Utilities

	
sinistra.utilities.ab_to_vega(ab_mag, band)

	Converts a AB mag to Vega.

This basically contains a bunch of AB-Vega conversions, so I don’t have
to look them up every time I want to do anything.

	Parameters:	
	ab_mag (float) – magnitude in the AB system to be converted to Vega.

	band (str) – Band the magnitude is in. Can be one of the following: “w1”,
“w2”, “w3”, “w4”.

	Returns:	float containing the Vega magnitude

	
sinistra.utilities.check_if_file(possible_location)

	Check if a file already exists at a given location.

	Parameters:	possible_location (str) – File to check. Can be a path to a file, too.

	Returns:	bool representing whether or not a file already exists there.

	
sinistra.utilities.empty_data(datatype)

	Makes an empty data of a given datatype.

This is useful for filling tables that have missing values.

Here is what the various datatypes return:

Float: np.nan

Integer: -999999999999

String: Empty string.

	Parameters:	datatype – data type, obtained by using .dtype on some numpy object.

	
sinistra.utilities.flux_conv(flux_zeropont, counts_zeropoint)

	Calculate the conversion factor from counts to flux.

This is done by using the zeropoints of the magnitudes in flux and counts.
The magnitude should be the same no matter how we calculate it, which is
how we can derive this:

\[\text{mag}_\text{flux} = \text{mag}_\text{counts}\]\[-2.5 \log_{10}(F) + Z_F = -2.5 \log_{10}(C) + Z_C\]\[\text{where $F = $ Flux, $C = $ counts, and Z_F and Z_C represent the respective zeropoints when using flux or counts}\]\[-2.5(\log_{10}(F) - \log_{10}(C)) = Z_C - Z_F\]\[\log_{10} \left(\frac{F}{C} \right) = \frac{Z_F - Z_C}{2.5}\]\[\frac{F}{C} = 10^{\frac{Z_F - Z_C}{2.5}}\]\[F = C * 10^{\frac{Z_F - Z_C}{2.5}}\]\[F = C * \text{Flux Conversion}\]\[\text{where Flux Conversion $= 10^{\frac{Z_F - Z_C}{2.5}}$}\]

This flux conversion is what is calculated here.

NOTE: Make sure the magnitudes really are the same (ie AB/Vega).

	Parameters:	
	flux_zeropoint (float) – zero point for calculating magnitudes when using
flux, such that mag = -2.5 log(flux) +
flux_zeropoint. The actual value will depend
on what flux units you want. If you want
microJanskys, use 23.9, for example.

	counts_zeropoint – zero point for calculating magnitues when using
counts, such that mag = -2.5 log(counts) +
counts_zeropoint. This is often found in the
header of the image in question.

	Returns:	float containing the conversion from counts to flux, such that
flux = counts * flux_conv. See above for derivation.

	
sinistra.utilities.flux_to_mag(flux, zeropoint)

	Convert flux to magnitude with the given zeropoint.

\[m = -2.5 \log_{10} (F) + C\]

	Parameters:	
	flux – flux in whatever units. Choose your zeropoint correctly to make this work with the units flux is in.

	zeropoint – zeropoint of the system (in mags)

	Returns:	magnitude that corresponds to the given flux

	
sinistra.utilities.gaussian(x, mean, sigma, amplitude)

	The Gaussian density at the given value.

The Gaussian density is defined as

\[f(x) = A e ^ {- \frac{(x - \mu)^2}{2 \sigma^2}}\]

Note that if you want a normalized Gaussian (so that the total area
under the curve is 1), then use the normed_gaussian() function.

	Parameters:	
	x (float) – location to get the Gaussian density at.

	mean (float) – Mean of the Gaussian.

	sigma (float) – Standard deviation of the Gaussian. Should be positive

	amplitude – Height of the highest point of the Gaussian.

	Returns:	Gaussain density of the given gaussian at the given x value.

	
sinistra.utilities.mag_errors_to_percent_flux_errors(mag_error)

	Converts a magnitude error into a percent flux error.

\[m = -2.5 \log_{10} (F) + C\]\[dm = \frac{-2.5}{\ln(10)} \frac{dF}{F}\]\[\frac{dF}{F} = \frac{\ln(10)}{2.5} dm \]

The minus sign just tells us that increasing flux gives decreasing magnitudes, so we can safely ignore it.

	Parameters:	mag_error – magnitude error

	Returns:	percentage flux error corresponding to this magnitude error.

	
sinistra.utilities.mag_to_flux(mag, zeropoint)

	Convert a magnitude into a flux.

We get the conversion by starting with the definition of the magnitude scale.

\[m = -2.5 \log_{10}(F) + C \]\[2.5 \log_{10}(F) = C - m\]\[F = 10^{\frac{C-m}{2.5}}\]

	Parameters:	
	mag – magnitdue to be converted into a flux.

	zeropoint – zeropoint (in mags) of the magnitude system being used

	Returns:	flux that corresponds to the given magnitude

	
sinistra.utilities.normed_gaussian(x, mean, sigma)

	The Gaussian density at the given value.

The Gaussian density is defined as

\[f(x) = \frac{1}{\sigma \sqrt{2 \pi}} e ^ {- \frac{(x - \mu)^2}{2 \sigma^2}}\]

Noe that if you want a Gaussian that is not normalized (ie where you
can set the amplitude), then use the gaussian() function.

	Parameters:	
	x (float) – location to get the Gaussian density at.

	mean (float) – Mean of the Gaussian.

	sigma (float) – Standard deviation of the Gaussian. Should be positive

	Returns:	Gaussain density of the given gaussian at the given x value.

	
sinistra.utilities.percent_flux_errors_to_mag_errors(percent_flux_error)

	Converts a percentage flux error into a magnitude error.

\[m = -2.5 \log_{10} (F) + C\]\[dm = \frac{-2.5}{\ln(10)} \frac{dF}{F}\]

	Parameters:	percent_flux_error – percentage flux error

	Returns:	magnitude error corresponding to the percentage flux error.

	
sinistra.utilities.reduced_chi_sq(model, data, errors)

	Does a reduced chi squared calculation

\[\chi^2 = \sum_{k=1}^{n} \left(\frac{\text{model}_k - \text{data}_k}{\text{error}_k} \right) ^2\]\[\chi^2_{\text{red}} = \frac{\chi^2}{n}\]

where \(n\) is the number of data points.

	Parameters:	
	model – list of values that describe a possible fit to the data

	data – list of values that are the data do be fitted

	errors – list of errors on the data

	Returns:	value for the reduced chi squared value of the fit of the model to the data

	
sinistra.utilities.vega_to_ab(vega_mag, band)

	Converts a Vega mag to AB.

This basically contains a bunch of AB-Vega conversions, so I don’t have
to look them up every time I want to do anything.

	Parameters:	
	vega_mag (float) – magnitude in the Vega system to be converted to AB.

	band (str) – Band the magnitude is in. Can be one of the following: “w1”,
“w2”, “w3”, “w4”.

	Returns:	float containing the ab magnitude

 Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sinistra 0.1 documentation

Classes

	
class sinistra.classes.AsymmetricData(value, upper_error, lower_error)

	Bases: sinistra.classes.Data

Class that represents a data point, with both a value and upper and lower
errors.

Addition and subtraction operators are implemented smartly.

	
class sinistra.classes.Data(value, error)

	Bases: object

Class that represents a data point. Has a value, as well as errors.

Addition and subtraction operators are implemented smartly, too.

 Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sinistra 0.1 documentation

Astropy Helpers

	
sinistra.astropy_helpers.match_one(table_1, table_2, ra_col_1='ra', ra_col_2='ra', dec_col_1='dec', dec_col_2='dec', max_sep=3.0, include_all_from_1=False)

	Matches objects from two astropy tables by ra/dec. All objects from the
first will be matched to one in the second.

	Parameters:	
	table_1 – First astopy table object containing objects with ra/dec
information.

	table_2 – First astopy table object containing objects with ra/dec
information.

	ra_col_1 – Name of the ra column in table_1. Defaults to “ra”.

	ra_col_2 – Name of the ra column in table_2. Defaults to “ra”.

	dec_col_1 – Name of the dec column in table_1. Defaults to “dec”.

	dec_col_2 – Name of the dec column in table_2. Defaults to “dec”.

	max_sep – Maximum separation (in arcseconds) allowed for two objects
to be considered a match.

	include_all_from_1 – Whether or not to include all rows from table 1,
not just those that have matches.

	Returns:	Astropy table object containing the matches between the two
input table objects. All columns from both catalogs will be
included, as well as a separate separation column.

	
sinistra.astropy_helpers.pretty_write(table, out_file, clobber=False)

	Writes an astropy table in a nice format.

	Parameters:	
	table (astropy.table.Table) – Astropy table object to write to file.

	out_file (str) – Place to write the resulting ascii file.

	clobber (bool) – Whether or not to overwrite an existing file, if it exists.
If this is false, the function will exit with an error if
a file already exists here. If clobber is True, it will
overwrite the file there.

	
sinistra.astropy_helpers.symmetric_match(table_1, table_2, ra_col_1='ra', ra_col_2='ra', dec_col_1='dec', dec_col_2='dec', max_sep=3.0)

	Matches objects from two astropy tables by ra/dec.

This function does symmetric matching. This measns that to be defined as
a match, both objects must be each other’s closest match. Their separation
must also be less than the max_sep parameter.

	Parameters:	
	table_1 – First astopy table object containing objects with ra/dec
information.

	table_2 – First astopy table object containing objects with ra/dec
information.

	ra_col_1 – Name of the ra column in table_1. Defaults to “ra”.

	ra_col_2 – Name of the ra column in table_2. Defaults to “ra”.

	dec_col_1 – Name of the dec column in table_1. Defaults to “dec”.

	dec_col_2 – Name of the dec column in table_2. Defaults to “dec”.

	max_sep – Maximum separation (in arcseconds) allowed for two objects
to be considered a match.

	Returns:	Astropy table object containing the matches between the two
input table objects. All columns from both catalogs will be
included, as well as a separate separation column.

	
sinistra.astropy_helpers.symmetric_match_both(table_1, table_2, ra_col_1='ra', ra_col_2='ra', dec_col_1='dec', dec_col_2='dec', max_sep=3.0)

	Matches objects from two astropy tables by ra/dec, including all objects.

This function does symmetric matching. This measns that to be defined as
a match, both objects must be each other’s closest match. Their separation
must also be less than the max_sep parameter.

Each object from both tables is included, even if there are no matches
for that object. The empty space will be filled with the appropriate
empty data.

	Parameters:	
	table_1 – First astopy table object containing objects with ra/dec
information.

	table_2 – First astopy table object containing objects with ra/dec
information.

	ra_col_1 – Name of the ra column in table_1. Defaults to “ra”.

	ra_col_2 – Name of the ra column in table_2. Defaults to “ra”.

	dec_col_1 – Name of the dec column in table_1. Defaults to “dec”.

	dec_col_2 – Name of the dec column in table_2. Defaults to “dec”.

	max_sep – Maximum separation (in arcseconds) allowed for two objects
to be considered a match.

	Returns:	Astropy table object containing the matches between the two
input table objects. All columns from both catalogs will be
included, as well as a separate separation column.

 Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Sinistra 0.1 documentation

Photometry

	
sinistra.phot.aperture_grid(image, spacing, output=False, clobber=False)

	Makes a grid of apertures and writes to a qphot-compatible coords file.

	Parameters:	
	image (str) – location of the image to be used.

	spacing – x and y spacing between locations. For example, if one
aperture is located at x, the next is x + spacing. The
same thing holds for the y direction.

	spacing – float

	output (bool / str) – Either False, or the name of the coordinates file
that the output will be written to. If you don’t want
to write to a file, pass in False.

	clobber – Whether or not to check for an already existing file of
this name. If it already exists, it will raise an error.

	Returns:	List of tuples that contain the x,y coordinates of each
aperture.

	
sinistra.phot.fit_gaussian_negative(data, upper_cutoff, plot=False, savename=None, data_label='Counts')

	Fits a Gaussain to all data underneath some cutoff.

This is useful when doing things where the lower side of a Gaussian tells
about the intrinsic scatter of something, whereas the upper end is
contaminated by real objects. An example is the flux within many
randomly placed apertures. The lower side will tell the sky error in the
aperture flux.

	Parameters:	
	data (list, np.array) – list of data to be fitted.

	upper_cutoff (float) – Data below this number will be used to fit the
Gaussian, while data above this will be rejected.

	plot (bool) – Whether or not to create a plot showing the best fit to the
histogram of the data.

	savename (str) – If you are creating a plot, enter a file path here to save
the figure. If this is left as none, then the plot will
not be saved. If you are running in an Jupyter notebook,
the figure will show up even if it is not saved, so it’s
not essential.

	data_label (str) – Descriptor of the data that will be used on the x-axis
of the data histogram. Defaults to “Flux” unless
otherwise specified.

	Returns:	the mean and sigma of the best fit Gaussian.

	
sinistra.phot.sky_error(image, aperture_size, flux_conv, plot=True)

	Figures out the sky error with an aperture of a given size.

This is done by placing apertures in a grid throughout the image, then
doing aperture photometry within those apertures. Most of those will be on
empty sky. By examining the spread of the fluxes of the apertures that
were on empty sky, we can get an idea of the general sky scatter in an
aperture of that size.

	Parameters:	
	image (str) – Image to do this process on. Pass in the path to the image,
or just the name of the image if it is in the current
directory.

	aperture_size (float) – The diameter of the aperture you want to use. NOTE
THAT THIS IS DIAMETER, NOT RADIUS!

	flux_conv (float) – multiplicative factor to get from counts in the image
to real fluxes in whatever units you want. Should be
defined such that “flux” = “counts” * flux_conv. This
can be determined from the zeropoint of the image.

	plot (bool) – Whether or not to plot the Gaussian that results from this
process.

	Returns:	flux error within that aperture size, in real flux units. Note
you need to multiply by the aperture correction to get total
errors!

 Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Sinistra 0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 sinistra	

 	
 	
 sinistra.astropy_helpers	

 	
 	
 sinistra.classes	

 	
 	
 sinistra.phot	

 	
 	
 sinistra.utilities	

 Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Sinistra 0.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | M
 | N
 | P
 | R
 | S
 | V

A

 	

 	ab_to_vega() (in module sinistra.utilities)

 	aperture_grid() (in module sinistra.phot)

 	

 	AsymmetricData (class in sinistra.classes)

C

 	

 	check_if_file() (in module sinistra.utilities)

D

 	

 	Data (class in sinistra.classes)

E

 	

 	empty_data() (in module sinistra.utilities)

F

 	

 	fit_gaussian_negative() (in module sinistra.phot)

 	flux_conv() (in module sinistra.utilities)

 	

 	flux_to_mag() (in module sinistra.utilities)

G

 	

 	gaussian() (in module sinistra.utilities)

M

 	

 	mag_errors_to_percent_flux_errors() (in module sinistra.utilities)

 	mag_to_flux() (in module sinistra.utilities)

 	

 	match_one() (in module sinistra.astropy_helpers)

N

 	

 	normed_gaussian() (in module sinistra.utilities)

P

 	

 	percent_flux_errors_to_mag_errors() (in module sinistra.utilities)

 	

 	pretty_write() (in module sinistra.astropy_helpers)

R

 	

 	reduced_chi_sq() (in module sinistra.utilities)

S

 	

 	sinistra.astropy_helpers (module)

 	sinistra.classes (module)

 	sinistra.phot (module)

 	sinistra.utilities (module)

 	

 	sky_error() (in module sinistra.phot)

 	symmetric_match() (in module sinistra.astropy_helpers)

 	symmetric_match_both() (in module sinistra.astropy_helpers)

V

 	

 	vega_to_ab() (in module sinistra.utilities)

 Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Sinistra 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Gillen Brown.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

